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A theory for deviation functions defined as the deviation from strict gaussian behaviour of electric
field correlation functions obtained from Quasi-Elastic Light Scattering experiments is presented. Its
application to systems with different types of particle size distributions is treated both theoretically
and by numerical examples. Expressions are given for distributions where the correlation function
can be expressed as a Laplace transform in closed form. The theory is also compared with experi-
ments on solutions of polymers with a varicty of molccular mass distributions. It is concluded that
even if the procedure based on deviation functions cannot compete with other numerical inversion
methods in the direct determination of molecular size distributions it may substantially help to vis-
ualize the magnitude of the cffect of polydispersity and scrve as a prerequisite for a decision con-
cerning how far it is meaningful to pursue more precise calculations. This is essentially equivalent to
a judgement of the noisc level of the experiment and of the “information content™ to be expected.

In the type of fluctuation spectroscopy experiment normally termed Quasi-Elastic Light
Scattering (QELS) correlation times characteristic of certain dynamic processes are
determined. When the technique is applied to dilute polymer solutions the charactceristic
corrclation times obtained are dircctly related to the diffusion cocfficient of the
polymer specices in the medium. Since there is a unique relation between molecular size
and diffusion cocflicient such experiments provide information of particle size and par-
ticle size distributions.

General theory! shows that for a normal QELS experiment the basic intensity corre-
lation data G(t), where T is the correlation time, follows the mathematical form

G() = A{l + Blg@]*} . )
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where A and B are constants characteristic of the particular experiment and equipment.
For an experiment with only one characteristic correlation time, I}, the electric field
correlation function g(t) reduces to

g(t) = exp(-T'1). (@)

For simplicity the parameter I' will sometimes be referred to as “correlation fre-
quency”. If the dynamic process giving rise to the QELS effect is the translational
diffusion of a single species onc can show! that

r = ¢°p, A3)

where D is the diffusion cocfficient and g is the value of the scattering vector defined
by

q = (4nn/Nsin®(0/2) *)

and A is the wavelength of light in vacuum. Obviously G(t) will become equal to A for
large values of t. Hence the numerical value of A is sometimes called “bascline”.

THEORETICAL

In case of more than one dynamic process (e.g. species of different size diffusing as for
a polydisperse polymer) there will be a distribution of characteristic correlation times
(or more precisely correlation frequencies), \W(T"), and then the correlation function will
be given by

oo

f Y(D)exp(-rt)dl’ Q)

0

g(v)

with

Jwrur = 1 (6)

0

since P(T") is normalized. Obviously, from Eq. (5), g(t) is the Laplace transform, W, of
P(T), i.c. by normal notation

W) = [ p(Dexp(-Tvdr 7)
and
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gv) = W(v). ®)

It is clear that a discussion of how g(t) is numerically affected by different distribu-
tions P(T) is greatly simplified by selecting such functions 1 that give a Laplace trans-
form W in closed form. Model calculations for such cases will be prescnted in a later
section in this paper.

In the practical application of QELS to macromolccular systems therc are some not
fully solved questions? concerning the analysis of g(t) in terms of the normalized dis-
tribution of corrclation times, (I).

In the present paper we will discuss these problems in a different way trying to relate
the distribution function 1 to the deviation of g(t) from a single exponential form. Such
“deviation” discussions have proved to be quite efficient in classical diffusion
studies™*. This is particularly the case when polydispersity or multicomponent effects
are investigated. Often it is illustrative to relate the magnitude and form of the devia-
tion for a given average value (I) to the sample molecular size distribution.

The concept of deviation functions have previously been utilized in many branches
of physical chemistry (cf. excess functions in thermodynamics®) and in particular in the
quantitative analysis of multicomponent diffusion situations*S. Although the deviation
function approach has the same information content as other data treatments, it often
allows a morc practical understanding of the experimental results. It certainly helps to
scrutinize the basic data since the deviation plots arc sensitive to minute changes in the
numerical values. The analysis presented here, in a sensc “lincar in I'”, is particularly
uscful in cases when the information content in the data covers only a relatively re-
stricted range (c.g. macromolecular polydispersity). Widcly separated time modes (dis-
tributions) should be treated in a different manncr.

For further reference we will introduce the following definitions concerning averages
in terms of the first and second moment, (I') and (%), respectively, as well as the
distribution width 62 and the relative distribution width p? for the distribution function
in question as given by the following relations:

(ry = TI‘w(F)dl" (6a)
0

r? = szlp(F)dF (6b)
0

o’ = (M%) -(ry (6¢)
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p? = o2/(TV = (MH/Y - 1. (6d)

The Deviation Function and Its Basic Properties
From relation (5) we immediately have that

0

limg(t) = [ ()l = 1 Q)
=0 0
limgt) = 0. 10)
The derivative of g with respect to T is given by
g@ = [ W(@)lexp(-rr)dl (1)
0
and
limg'(t) = - [ Myp(Cdr = —(T), (12)
0

where (T} is the average value of T (the first cumulant?). The numerical value, p, of the
first cumulant can be determined from the experimental data and a reference function
8o(T) can be defined according to

8o(t) = exp(-pr). (I3)
From this a deviation function, w(t), is defined

w(t) = gt) - g(v). (14)

It is easily shown that w(7) is a function for which m(0) = 0 and w() = 0. The integral
of w(t) over all correlation times gives an interesting property. This integral is ex-
perimentally accessible according to its definition
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oo

I, = [ o) (15)

0

and from the previous relations
I, = [f w(Dexp(-Tr)dldr - [ exp(-pridr = [ (1/T(I)Mr - 1/p. (16)
00 0 0

The first term in Eq. (16) defines the average of the characteristic corrclation time r-i,
i.c.

(r'y = [ (1/Typ(ryr 17)
0
and we have

)y =1, +p". (18

Some further propertics of the deviation function may be derived. Writing Eq. (14)
in explicit form we have

o0

w(t) = flp(l“)cxp(—l“t)dr - exp(-pr) (14a)
0

and hence the derivative

w'(t) = f W()leT™dl - pe*. 19)
0

If the maximum (or minimum) of () occurs for T = t,,, where »'(t,) = 0 one finds

o

(Te Ty = [ pOleT™dl = peFa. (20)
0

The maximum value itsclf is given by

o

Opax = O(T,) = f Y()eTdl = ¢ 7 =
0
= glt,) - P = P gly) eFe — 1]. @n
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One also has the following average directly

€Ty = [Tl = g(r,,). (22)
0

Let us finally discuss the second derivatives and the inflexion points, i.e.,

w'(r) = f W(O)2e Tl - pZer* 23
0
which gives
(T% ) = p%e? + o'(1) (24)

and at an inflexion point T = 1, ; where ” = 0 one finds

(M%) = p2e Pl (PA))

From these expressions one may define a measure of the width of the distribution, m,
according to

m = (M%) (e Ty /(e T2 . (26)

From Eqs (20), (22), and (25) we get

m = g(rm)c'l’("inr' ). (27)

The main results are contained in relation (17) as well as the relations basic to and
including Eq. (27).

EXPERIMENTAL

Standard polystyrene (PS) from Pressure Chem. Co., M,, 498 000 (M, /M, < 1.06, batch 5a) and M,,
1800 000 (M, /M, < 1.2, batch 14a), were uscd. The broad polystyrene sample (Polystyrol 11D,
BASF) was characterized” previously (M,, 295 000, M,/M, ~ 4.59). Polyethylene oxide (PEO) stand-
ard sample (M,, 150 000, M, /M, < 1.05) was a product of Polymer Laboratorics.

The QELS experimental setup used, preparation and filtration of solutions were described re-
cently®. It consists of a coherent Super-Graphite CR-4 argon-ion laser (Coherent Laser Division, Palo
Alto, CA, U.S.A.) equipped with an intra-cavity etalon and tuned to 514.5 nm, a IHlamamatsu R 268
photomultiplier tube (Hamamatsu Photonics K K, Japan), an amplifier-discriminator supplied by
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Lindmark Innovation AB, Sweden and a 64 channel Langley-Ford digital correlator (Langley—Ford
Instruments, Amherst, MA, U.S.A.). The polystyrene experiments were performed in toluene and the
polyethylene oxide experiments in water solutions.

Calculation of experimental deviation functions. We refer to data obtained from a normal QELS
experiment with a multichannel correlator. Let n; be the accumulated number of counts in channel i
of the correlator and let A be the corresponding number for the “baseline™ (calculated or measured),
sce Eq. (1). For channels equidistantly spaced in time (channcl width At) the correlation time is
given by

T = iAt. (28)

To obtain the “initial” number of counts ng, i.e. the number of counts in a channel zero, n; for the
first few channels is plotted versus t; (or i) and extrapolated to correlation time zero. The experimen-
tal correlation function g; is then calculated according to

g = [(ni-A)Y(no-A)N"? = g). (29)

By comparison with Eq. (1) one finds = ng/A - 1. From Eq. (29) the derivative g'(t;) of the corre-
lation function with respect to T can be found by an appropriate numerical derivation procedure.
Extrapolation to T = 0 gives (I') = p. In the same manner the second derivative g"(t;) can be calcu-
lated and extrapolated to T = O giving an intercept equal to (I'?). From these values the relative dis-
tribution width, p2, can be obtained according to Eq. (6d). (I') can also be obtained by taking the
derivative of the function -In g; with respect to t and extrapolating to T = 0. This is a more rcliable
extrapolation and has been used in this work. A second order polynomial fit has been found to often
give the best results in the extrapolation. The experimental deviation function, w(t)), is finally calcu-
lated according to

w(t) = glu) - exp(-pt). (30)

The first and sometimes even the second channel contain errors due to fast correlations residing in
the electronics, the PM tube, etc. Hence, in the extrapolations to obtain A and ([) as described above,
it is good practice not to include these channels. This procedure was followed when processing the
experimental data presented here.

Both for the data treatment and for the model calculations the Macintosh software program
KalcidaGraph™ was used.

RESULTS AND DISCUSSION

Model Calculations for Discrete Distributions

In order to get a better feeling for the functional shape and numerical magnitude of the
deviation functions for QELS some model calculations were performed for discrete
distributions of the characteristic correlation time, seec Case I and Case I below.

Lect us assume that the polymer sample contains N infinitely sharp fractions cach
with a characteristic correlation frequency I';, i = 1, . . ., N, and represcnted by the
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weight fraction w;. This situation is denoted Case I. For the distribution function we
then have

()

SwdT-T), i=1,...,N €2)

1, (32)

Wi

where & denotes the Kronecker delta function. The various averages are given by the
following relations:

(f) = 3w (32a)
T = 3w, (326)
o’ = () - (ry (32¢)
p? = o¥/(TY = TH/ATY - 1. (324)

The correlation function becomes
PY(r) = }‘P(F)cxp(—l‘t)dl‘ = ZW,cxp(-I‘,x) = gv), 33

0

where the summation is performed over i = 1, . . ., N. From Eq. (33) we havc the

following relations useful for the experimental definition of the deviation functions

]

g () -y wlexp(-T'x) (€2))

g0) = -Fwl; = -(I) = -p. (35)

We now obtain the deviation function m(t) and its derivatives according to
() = gv) - go(v) = Y wexp(-T';t) - c7* 30)
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w'(7)

- z wexp(-I'T) + pe”" 37
w'x) = Ewirfcxp(—l",-t) - pPeFr. (€2))

Obviously the first cumulant, {I') = p, can be dircctly obtained from experimental data
(slope of g(t) at the origin). If the precision of the data is sufficicnt, one may read the
correlation time coordinate T, for the maximum directly from a plot of w(t) and obtain
T, for the inflexion point by numerical differentiation of w(t). This would correspond
1o the two relations ®'(t,) = 0 and 0" (T;,¢) = 0 and the distribution measure m could be
calculated according to Eq. (27). On this scheme it is relatively easy to calculate the
deviation behaviour assuming an appropriate sct of paired distribution data {T';, w;}.

The previous expressions reduce to very simple formulas in the case of a mixture of
only two sharp fractions (denoted Case II) for which we may write 'y =aand Ty = b
giving

o) = gT) - gt) = We™™ + we™) - e (39)
w'(t) = - (wae™™ + wbe™) + peF* (40)
o0'(t) = (W% + wyb’e?) - plerr. €2))

In order to estimatec how far the t-axis should be extended in the numerical test
calculations one can observe that exp(-I't) has decreased to approximately 1/100 of
its initial value when T has increased from 0 to t, = 4/T". In the case of a binary
distribution one then should select a value T, corresponding to the longest correla-
tion time of interest, i.c. where the clectric ficld correlation curve has reached the
base line to within one per cent. If, for instance, b < a one selects t, = 4/b. Further-
more, the steps in T could then be chosen to be At = 1/(10b), which would give at
least 40 values between 0 and <,. Finally, since it is only the ratio a/b that is of
interest the test calculation can be performed according to a fairly simple scheme by
varying this ratio for a fixed value of b.
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Model Calculations for Explicit Laplace Transforms

For continuous distributions it is easy to find the correlation and deviation functions for
distributions y(I") such that the Laplace transform ¥ can be given in closed form. We
will give results for two such distributions, normalized to 1, denoted Case I and Case
IV below.

Case III. Let u(f) denote the unit function defined as u(t - @) = 1if ¢ > a, otherwisc
1 = 0. Then a normalized distribution can be defined according to

Y(I) = [T -a) - (T -b)]/(b-a) b>a, 42)

where Y(T') = 1/(b - a) = const in the interval (a, b), otherwise (') = 0. It is easily
shown that this corresponds to the Laplace transform

W(t)

gr) = (1/1)(ec —e?)/(b - a) b>a 43)

(r)

(@+b)/2 = (a/2)(1 +b/a) (44)

w(t) g(®) - g) = 1/ -c)/(b-a) - exp[-(a +b)r/2]. (45)

Furthcrmore, the following characteristics apply to the distribution in question, cf. sec-
tion 1:

T = B*+a*+ab)/3 (44a)
o? = (a-b)*/12 (44b)
p? = o?/(TY = (1/3)[(1 - b/a)/(1 + b/a)]?. (44c)

Case IV. Let k and « be real, positive numbers and define the distribution

YI) = (a**1/k)ke-al (46)
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where a* * /k! is a normalization factor. The corresponding Laplace transform is given
by

YY) = gt) = (a"*‘/k!)l‘g(k+])/(1:+a)"”, “7)

where 'y (k + 1) denotes the gamma function. If we limit ourselves to k being a positive
integer, which we will do throughout this paper, Eq. (47) simplifies and we have

YY) = gt) = a1/ (x+apt! 48)
) = (k+1)/a #9)
o(t) = gt) - gor) = ad*V/(t+a)k*! - exp[-(k+ 1)t/a]. (50)

Furthermore, if k is an integer the following characteristics apply to the distribution in
question

Ty = (k+1)(k+2)/a? (49a)
o = (T/(k+1) = (k+1)/a? (49b)
p? = o2/([) = 1/(k+1). (49¢)

Comparison of Calculated Model Deviation Functions

Starting from the various expressions presented it is a straightforward task to calculate
the deviation functions for a given distribution corresponding to a given (') and various
relative widths p2. Obviously if the different cases, as presented above, are to be com-
pared for similar values of (I') and p? then the appropriate cquations relating (I') and p?
to the parameters a, b, and k have to be solved.

Table 1 gives a summary of parameters used in the test calculations. Case IIA gives
results for the mixture of two fractions with characteristic correlation times not too far
apart (10 and 30, respectively, and one may think of these numbers being expressed in
microseconds). Case 1IB gives results for the mixture of two fractions with charac-
teristic correlation times quite well separated (5 and 60, respectively). The deviation
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TABLE |
Summary of data for calculated deviation functions; the quantitics pzand (I') are calculated from the
parameters a, b, and k, whereas w,, has becn read from the deviation plots

Case p’ 1/<I'> O pmax wy a b k
A 0.302 23.1 0.050 0.15 1/10 1/30 -
0.326 21.4 0.060 0.20
0.250 15 0.074 0.50
0.094 11.5 0.038 0.80
0.070 11.1 0.030 0.85
11B 2.196 22.6 0.263 0.15 1/5 1/60 -
1.891 18.8 0.293 0.20
0.716 9.2 0.265 0.50
0.202 6.1 0.119 0.80
0.144 5.8 0.091 0.85
1C 0.062 37.5 0.018 0.50 1/30 1/50 -
I 0.250 20 0.080 - 1/150 14/150 -
11 0.320 20 0.106 - 1/500 1/10 -
v 0.167 20 0.043 - 120 - 5
v 0.250 20 0.063 - 80 -
0.08
w | 4
0.04 = b
0.02 7 4

300

FiG. 1
Model deviation functions calculated for a mixture of two monodisperse fractions having aI'y = 1/10,
I';=1/30 and b I'; = 1/5, ', = 1/60 at different compositions (sce Table I); ¢ w, = 0.5; (3 0.2; A 0.8;
O 0.85; ¢ 0.15
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functions for Casc IIA is shown in Fig. 1a. Case IIB has similar deviation graphs
(Fig. 1b) but the ordinate values are much larger. The maximum of the deviation func-
tion, ®,,,,, is plotted in Fig. 2a as a function of the relative composition w), i.e. the
fraction of component 1 present, for IIA and 1IB. Figure 2a shows that the function
®,,.:(W)) passes a maximum. This maximum increases and its position shifts to lower
values of wy as the difference in ' increases. Furthermore, it can be inferred from
Fig. 2a that if to a component a with a low characteristic correlation time (high diffu-
sion coefficient, low molecular mass) there is added another component with higher
characteristic correlation time (low diffusion coefficient, high molecular weight) there
is a steady and fairly linear increase in o, i.c. when wy is decreased from wy =110 a
value closer to the maximum. A similar obscrvation is made if to a component with a
large characteristic correlation time there is added an increasing amount of a compo-
nent with a small characteristic correlation time (component a), i.c. wy is increased from
w, = 0 upwards towards the maximum. The largest values of m,,, may be expected
when a fairly small amount of component a is added to the second component in the
casc of a high difference in correlation times. Thus for the mixture of fairly sharp
fractions the deviation functions can be expected to give quite good information when
one component is known to be dominant. The corresponding plot of p? against compo-
sition (Fig. 2b) behaves similarly to the plot in Fig. 2a. Hence, the relation between
W,,,, and the relative width, p2, see Fig. 3, provides an approximately lincar relation of
some practical interest for continuous as well as bimodal samplcs as long as the relative
width is not cxcessive (Cases IIA, III, and 1V). The case with two widely differing
species mixed together differs considerably from this picture, as indicated in Fig. 3.

2.5 T T T T T T
b
oA —
T T T T T
03 a 15 F _
Wmax 4 1 F / i

0 02 04 O
0.8 W, 1 0 02 04 0.6 W, 1

Fis. 2
The dependence of @ maximum value of deviation and b rclative width of the distribution on the
composition of a mixture of two sharp fractions (sce Table I); A I'y = 1/10, I', = 1/30, and O Iy =
1/5, I'y = 1/60

Collect. Czech. Chem. Commun. (Vol. 58) (1993)



2548 Sundelof, Porsch:

Figures 4a and 4b give deviation functions for Case III and Casc 1V, respectively.
Case III is a “pulsc function” distribution, i.c. it has a constant, non-zero value in the
interval (a, b), and it is clcar that the deviation function — similar in shape to Case II —
tends to tail out for longer corrclation times more than in the bimodal case, cf. Fig. 1.
The same is true for the continuous, single peaked function in Case IV. These two cases
together with the bimodal distribution in Casc Il cover a fairly wide range of possible
distributions met with in practice. The approximate coincidence of Cases IIA, III, and
IV in Fig. 3 is not surprising. It reflects the low resolution®® of the QELS technique to
the detailed shape of the distributions having moderate widths. Thus, the empirical
relationship between w,,,, and p? (Fig. 3) would in all its approximation be useful for
an cstimation of the width of modcrately broad distributions.

Experimental Deviation Plots

Table Il summarizes the cssential data from the experiments. In this table (') has been
obtaincd in the normal way from the experimental QELS correlation function. The
maximum of the deviation function, m,,,,, is rcad from the corresponding deviation
function. The values of (pz)diag have been taken from the approximate, empirical rela-
tionship in Fig. 3. The values of (p?)., . have been calculated from the initial values of
the first and second derivative of the correlation function with respect to t. Clearly, the
correct determination of deviations requires a precise determination of the initial slope,
i.c. a sufficicnt numbcr of points at low values of t. At the same time the sum of two
sufficiently diffcrent exponentials decays very slowly to zero and the experiment
should be cxtended to large values of t. This has not been possible with the correlator
used (facility with 64 cquidistantly spaced channcls; as indicated carlicr the computa-
tional method devceloped is also primarily intended for “non-separated” distributions).
The requirement of sufficient precision of initial slope was preferred and therefore de-

0.3 T T T T
- ". -
Wmax |- e 4
e
- -"‘" =
..‘..
0.1 - ’-' : - G, 3
' The dependence of w,,,, on relative width of the
b_ < 7| distribution in the case of high (dotted line, @)
0 2 ) ) N ) and moderate polydispersity and/or T ratio for
0 0.2 0.4 0.6 pz 1 cases described in Table I; O IIA, A 1IC, O 111,
+ 1V
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viation graphs were not obtained up to sufficiently high correlation times t and could
not be integrated to give the quantity (I'"!) according to Eq. (18). For a similar reason
values of the distribution measure m according to Eq. (27) have not been calculated.
The results with a nonlinear channel correlator (BI 8000) will be published in the near
future.

It is clear from Table II that there is good agreement between (p?)gi,e and (%) e
The results for PS 6 confirm a narrow fraction (M,/M, = 1.06) giving zero deviation
within the experimental error. The other standard polystyrene (PS 5) is wider (M, /M, =~

TasLE 1
Summary of data from QELS experiments on polystyrcne (PS) samples in toluene and polyethylene
oxide (PEO) samples in water; the quantities ('), @y, (P° )d,,g and (p?).a1c have been experimentally
determined as described in the text

Experiment M, . 107 1/<I'> Winax (pz)d,»ag PDeate
PSS 1 800 122.2 0.067¢ 0.27 0.23
PS 6 498 79.2 ~0 ~0 ~0

PS 8 Mixture’ 89.6 0.044, 0.20 0.22
PS 13 295 58.9 0.0915 0.30 0.40
PEO 17 150 303.5 0.2955 0.8 0.9
PEO 19° 150 106.6 ~0 ~0 ~0

9 Mixture PS 5/PS 6 1 : 2 by weight; b PEO 17, aggregate component filtered off.

0.12 T T T T T T
| o.08 |
w T w -
0.04 ] o2}
. o L
0 1 1 [t A L 1 1 1 1 1 1 1
0 200 : 600 0 100 300
T ps T, ps
IiG. 4

Model deviation functions calculated @ for a mixture of two rectangular pulse distributions having
different widths: b/a = 14, a = 1/150 (dashed line) and a/b = 50, a = 1/500 (full drawn line), see
Table I, and b for Schulz—Zimm distributions having different widths: a = 120, k = 5 (dashed line)
and a = 80, k = 3 (full drawn line), sce Table I
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1.2) but the width itself cannot explain the observed non-zero deviation. The explana-
tion may be found in the shape of the molar mass distribution. This polystyrene sample
was shown!! to have a long low molecular mass tail. This may be interpreted as a low
amount of a component with a high diffusion constant and this is the casc when a large
®,,.x Should be expected. When this fraction is mixed with PS 6 in the ratio 1 : 2 by
weight, it is almost sure that the maximum in the w_,, vs composition plot is passed
(cf. Fig. 2a) and the observed w,,, goes down. The polystyrcne sample PS 13 is
known’ to have a fairly broad molar mass distribution (M,/M, =~ 5) extended down to
the oligomeric range. The values of p? (Table II) reflect the increased width of the
distribution as seen in comparison with the value 0.22 found in the case of the mixture
PS 5/PS 6.

The fairly low valucs of w,,, in all PS experiments again exemplify the low polydis-
persity resolution of the QELS technique. If it is assumed that D ~ M~V2 then onc has
for two monodisperse fractions D,/D, = (M,/M,)"”? = T'|/T’,. Hence to obtain the ratio
[')/Ty = 3 (Casc 11A) M,/M| must be 9. The mixture PS 5/PS 6 (M,/M| = 3.6) is casily
resolved by size exclusion chromatography but gives I}/, ~ 1.9 which is ncar to Case
IIC (Table I) where w,,, fora 1 : 1 mixture is only 0.02. Strictly speaking these values
arc valid for the theta-solvent behaviour!! but the exponent in the D ~ M~ relation
increases only moderately with the solvent quality (in a good solvent like toluene!? a =
0.57) and thercfore this insensitivity must be regarded as a general feature of the tech-
nique.

If the sample contains two species sufficiently different in T as in the case of PEO 17
(I'/T, ~ 10) in Fig. 6, a smooth w-plot deploying a much higher maximum is obtained,

P B

Lo a1,

FiG. 5 FiG. 6
Experimental deviation functions of different Experimental deviation functions of poly-
polystyrene samples described in Table II: ¢ PS 6, cthylenc oxide (see Table II); { before and O
APS50PS80PS 13 after removal of big particle component
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well comparable to that obtained in Case IIB (Table I). When the big particle compo-
nent was filtered off the deviation dropped to zero duc to a narrow molecular mass
distribution of the sample itself.

It can be concluded that even if this procedure based on deviation functions cannot
compete with other numerical inversion methods? for Eq. (7) in the determination of
molecular size distributions it may substantially help to visualize the magnitude of the
effect of polydispersity and as a prerequisite for a decision concerning how far it is
meaningful to pursue more precise calculations. This is essentially equivalent to a
judgement of the noise level of the experiment and of the “information content” to be
expected.
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